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Introduction

Graphical Models
Easy and Difficult
Dimer and Ising Models on Planar Graphs

Binary Graphical Models
Forney style - variables on the edges

,P(E) = Zil H fa(ﬁa) f,>0

a
Z:ZHfa(‘?a) Oap = Opy = *£1

partition function

71 = (012,014, 018)

dr = (012,023)

@ Most Probable Configuration = Maximum Likelihood =
Ground State: argmaxP(7)

o Marginal Probability: e.g. P(0ab) = > 5,.,, P(7)
o Partition Function: Z — Our main object of interest
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Introductlon Graphical Models

Easy and Difficult

Conclusions & Pwth Dimer and Ising Models on Planar Graphs

Easy & Difficult Boolean Problems

@ Any graphical problems on a tree (Bethe-Peierls, Dynamical
Programming, BP, TAP and other names)

Ground State of a Rand. Field Ferrom. Ising model on any graph
Partition function of planar Ising & Dimer models

Finding if 2-SAT is satisfiable

Decoding over Binary Erasure Channel = XOR-SAT

Some network flow problems (max-flow, min-cut, shortest path, etc)
Minimal Perfect Matching Problem

®© 6 6 6 6 o6 o

Some special cases of Integer Programming (TUM)

Typical graphical problem, with loops and factor functions of a
general position, is DIFFICULT
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Introduction

Graphical Models
Easy and Difficult
Dimer and Ising Models on Planar Graphs

Glassy Ising & Dimer Models on a Planar Graph

Partition Function of J;; 2 0 Ising Model, o; = %1

.. Jijoio; 4 5
Z-Y e (W) \§<\
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Introduction Graphical Models

Easy and Difficult
Dimer and Ising Models on Planar Graphs

Ising & Dimer Classics

L. Onsager, Crystal Statistics, Phys.Rev. 65, 117 (1944)

M. Kac, J.C. Ward, A combinatorial solution of the Two-dimensional Ising
Model, Phys. Rev. 88, 1332 (1952)

C.A. Hurst and H.S. Green, New Solution of the Ising Problem for a
Rectangular Lattice, J.of Chem.Phys. 33, 1059 (1960)

M.E. Fisher, Statistical Mechanics on a Plane Lattice, Phys.Rev 124, 1664
(1961)

P.W. Kasteleyn, The statistics of dimers on a lattice, Physics 27, 1209 (1961)

P.W. Kasteleyn, Dimer Statistics and Phase Transitions, J. Math. Phys. 4, 287
(1963)

M.E. Fisher, On the dimer solution of planar Ising models, J. Math. Phys. 7,
1776 (1966)

F. Barahona, On the computational complexity of Ising spin glass models,
J.Phys. A 15, 3241 (1982)
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Introduction Graphical Models

Easy and Difficult
Dimer and Ising Models on Planar Graphs

Pfaffian solution of the Matching problem

1 3
1 3
Z = 212234+214223 = VDetA Pf[A]
0 —zip 0 —zi4
1 3
A- | T2 0 +z3 —2z4
0 —223 0 +Z34
+z14 +24 —z34 O
Odd-face [Kasteleyn] rule (for signs) 1 3

Direct edges of the graph such that
for every internal face the number of
edges oriented clockwise is odd
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Introduction Graphical Models

Easy and Difficult
Dimer and Ising Models on Planar Graphs

Planar Spin Glass and Dimer Matching Problems

The Pfaffian formula with the “odd-face” orientation rule extends
to any planar graph thus proving constructively that

@ Counting weighted number of dimer matchings on a planar
graph is easy

o Calculating partition function of the spin glass Ising model on
a planar graph is easy

Planar is generally difficult [Barahona '82]

@ Planar spin-glass problem with magnetic field is difficult

@ Dimer-monomer matching is difficult even in the planar case

v
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Holographic Algorithms & Gauge Transformations
Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Planar is not necessarily easy ... but

Outline

@ Planar is not necessarily easy ... but
@ Holographic Algorithms & Gauge Transformations
o Edge-Binary models of degree < 3
o Edge-Binary Wick Models (of arbitrary degree)
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Holographic Algorithms & Gauge Transformations
Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Planar is not necessarily easy ... but

Are there other graphical models which are easy?
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Holographic Algorithms & Gauge Transformations
Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Are there other graphical models which are easy?

Planar is not necessarily easy ... but

Holographic Algorithms [Valiant '02-'08]

@ reduction to dimers via

@ ‘classical” one-to-one gadgets
(e.g. Ising model to dimer model)

“holographic” gadgets (e.g. )

resulted in discovery of variety of new easy planar models

A
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Holographic Algorithms & Gauge Transformations
Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Are there other graphical models which are easy?

Planar is not necessarily easy ... but

Holographic Algorithms [Valiant '02-'08]

@ reduction to dimers via

@ ‘classical” one-to-one gadgets
(e.g. Ising model to dimer model)

@ "“holographic” gadgets (e.g. )

@ resulted in discovery of variety of new easy planar models

A

Gauge Transformations [Chertkov, Chernyak '06-'09]

@ Equivalent to the holographic gadgets

(different gauges = different transformations)
@ Belief Propagation (BP)

is one special choice of the gauge freedom
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Planar is not necessarily eas but Holographic Algorithms & Gauge Transformations
Y easy ... Edge-Binary models of degree < 3
Edge-Binary Wick Models (of arbitrary degree)

BP+ for Planar [degree < 3]

Loop Series (general)
[MC,Chernyak '06]

Z=2y-z, z=1+) crc

Summing 2-regular (closed curve) partition is easy!!
[MC,Chernyak, Teodorescu '08]

zo =14 Y el P@le=2 [JSTAT "08]

Zs =1y zs,
Efficient Approximate Scheme
[Gomez,MC,Kappen '09]
http://arXiv.org/abs/0901.0786
UAI, 2009 + submitted to JML
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Holographic Algorithms & Gauge Transformations
Edge-Binary models of degree < 3
Edge-Binary Wick Models (of arbitrary degree)

Planar is not necessarily easy ... but

Easy Models of degree < 3  [MC,Chernyak, Teodorescu '08]

Generic planar problem is difficult )

A planar problem is easy if

@ the factor functions satisfy

(a,p)eE

®
VacG: Y H@)x I 0o @@@@w
= b

X (gap — tanh (nap + Mpa)) = 0

where 7) are messages from a BP

©
solution for the model @@@@@
@ i.e. when all (I!) “three-colorings” are

zero after a BP-transformation [BP
gauge= all (!!) “one-colorings” are zero]

“three-colorings” are shown in red
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Holographic Algorithms & Gauge Transformations

Planar is not necessarily easy ... but Edge-Binary models of degree| < 3
Edge-Binary Wick Models (of arbitrary degree)

Easy Models of degree < 3 (lI)

To describe the family of easy edge-binary models of degree not larger
than three (partition function is reducible to Pfaffian of a
|G1| x |G1|-dimensional skew-symmetric matrix) one needs to:

Item #1: Generate an arbitrary factor-function set which Y \(

WG (G) =0 if Y, 0. # 0(mod 2) Y oY

satisfies: Va:

ltem #2: Apply an arbitrary skew-orthogonal Gauge-transformation:

W (r,) — fo(ma) = 3 (H cab(wab,w;b)> W ()

! b~a
V{a, b} € G : Z Gop(m, ') Gpy (e, ') = 8(x”, =)
z=3 I at=a=3> 1II (Z (H Gabmm;b)) W(‘"’)m))
™ a€Gy ™ acGp 7r§ b~a

Generalize construction (ltem #1) to degree> 3 [ltem #2 is already generic]

http://
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Holographic Algorithms & Gauge Transformations
Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Planar is not necessarily easy ... but

Edge Binary Wick (EBW) Models [Chernyak, MC "09]

> anb Vab70 * *

_ (b) et
Zesw(W) = Z H W{alw“ saxk }={ala~bivap=1}

vy={vab}E€Z1(G:Z2)  bEG * *

and other d-vertex

e All odd weights are zero

number of crossings (mod 2)

e Even (d > 2) weights are expressed praiis
; g . o
( )V|a pair-wise welg(i:ts . S ot Coatr .
b _ b b _ et b
Wior, o} = > Wearcar Weapoay = (0D PP 11 Wap)
£EP([2k—1]) pPEE

Examples of 6-colorings and extensions of a EBW-model 6 vertex

W6 Was W3y [zero crossing] — Wi W35 Wye [one crossing] Wi3 Waos Wye [two crossings]  — Wja Was Wag [three crossings]
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Holographic Algorithms & Gauge Transformations
Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Edge Binary Wick Models (1)

Planar is not necessarily easy ... but

Known Easy Planar Graphical Models & EBW

d a gauge transformation reducing any easy planar model to a EBW
Dimer Model

Ising Model
Ice Model

Possibly all models discussed in the “holographic” papers

(*]
(*]
*]
]
v

Any EBW model on a planar graph is EASY

@ Equivalent to Gaussian Grassman Models on the same graph

e Partition function is Pfaffian of a |G1| x |G1| matrix

N
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Planar is not n il but Holographic Algorithms & Gauge Transformations
anar is not necessarily easy ... bu Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Related Grassmann/Fermion Models

Vertex Gaussian Grassmann Graphical (VG®) Models

Jep| 3 > eabs WD o | exp (% Y (a,b)eg; wabaab%a) I deab
W) (b—ac)eGy (a:b)
VG3 S,0; =

[ exp (% 2 (a,b)EGy waboab%a) (Hb) dp
a,

Pf(H(s, o; W)) H. — ggaC)Wb(i), i = (a,b) & j = (a,c), where b # c ~ a,
Pi(H(s,0:0) " Tabs i=(a,b), &j=(b,a).

Grassmann (anti-commuting) variables: V(a, b), (¢c,d) € Gi  QapPcd = —PcdPab
Berezin (formal) integration rules: V(a,b) € G1 : [ dpap =0, [ @apdps, =1

Main Theorem of [Chernyak,MC '09/planar]
Q@ do,¢==1:

st Zyga(s, o0 W) = Zegw (W)

@ The special configuration of o, corresponds to Kastelyan (spinor) orientation
on the extended planar graph
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Kasteleyn Conjecture for Dimer Model on Surface Graphs
Surface-Easy Edge-Binary Graph-Model which are Surface-Easy

Outline

© Surface-Easy
o Kasteleyn Conjecture for Dimer Model on Surface Graphs
@ Edge-Binary Graph-Model which are Surface-Easy
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Kasteleyn Conjecture for Dimer Model on Surface Graphs
Surface-Easy Edge-Binary Graph-Model which are Surface-Easy

Dimer Model on Surface Graphs (1)

Partition function of dimer model on a surface graph of genus g is
expressed in terms of a (£1)-weighted sum over 228 determinants

= surface-easy
o Kasteleyn '63;'67 - non-constructive (??) conjecture
o Gallucio, Loebl '99 - first [combinatorial] proof

@ Cimasoni, Reshetikhin '07 - topological proof and relation to
gauge fermion models

— \-
u -
genus g = 0 genus g =1 genus g =2
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Kasteleyn Conjecture for Dimer Model on Surface Graphs
Surface-Easy Edge-Binary Graph-Model which are Surface-Easy

Dimer Model on Surface Graphs (II)

Partition Function of Dimer Model, 7;; = 0, 1, on a surface graph G
di -
Z2(Giz) = >z mers H(i,j)er(zij) Y

Theorem: (formulation of Cimasoni, Reshetikhin)
Z(Giz) = 5 >y Arf(qz, )e®(mo) Pf(A%(2))
—_——

—+1; my—independent; depends only on [s]

@ g is a reference dimer configuration

@ s is a Kasteleyn orientation; [s] equivalence classes of the Kasteleyn orientations,
228 of them

@ c5(7r) = £1 defines total signature of the dimer configuration 7 wrt the
Kasteleyn orientation s

® g7, (@) is a well-defined quadratic form associated with s, 7 and « is a closed
curve on G; Arf(q5;,) is the Arf-invariant of the quadratic form.
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Kasteleyn Conjecture for Dimer Model on Surface Graphs
Surface-Easy Edge-Binary Graph-Model which are Surface-Easy

Dimer Model on Surface Graphs (lII)

2(Giz) = 55 Yo Arf(5, )e(m0) PF(A%(2))

@ the sum over determinants can be transformed into the sum
over partition functions of Kasteleyn-fermion models

o Kasteleyn orientation is a discrete version of spin(or)
structures [from topological field theories]

@ Powerful derivation techniques from topology [homology and
immersion theories|

Generic graphical model on a surface graph is
SURFACE-DIFFICULT

Our next task is:
To classify graphical models which are SURFACE-EASY
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Kasteleyn Conjecture for Dimer Model on Surface Graphs
Surface-Easy Edge-Binary Graph-Model which are Surface-Easy

Edge-Binary-Wick (EBW) Models and

Vertex Gaussian Grassman Graphical (VG*) models
on Surface Graphs

Main Theorem of [Chernyak,MC '09/surface]
Zesw (W) Zesw (1) = 31 Zves([s]: 1) Zves([s]; W) where

@ s = (o;¢) corresponds to a Kastelyan/spinor orientation defined on
extended graph

@ [s] are equivalence classes (228 of them) of the Kastelyan/spinor s
orientations
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Kasteleyn Conjecture for Dimer Model on Surface Graphs
Surface-Easy Edge-Binary Graph-Model which are Surface-Easy

EBW and VG® models on Surface Graphs (1)

Zesw (W) Zesw (1) = 32 Zves([s]: 1) Zves([s]; W)

The multi-step proof of the main surface theorem includes

@ Extended/fat graph construction and partitioning &€ of the even generalized loop
~ configurations into closed curves [Wick structure]

@ Analysis and relation between invariant objects (quadratic forms) for the
generalized loops, [y], and spinors, [s], defined on fat graphs and respective
Riemann surfaces.

@ Term by term comparison of the relation between the partial Zggy ([7]; W) and
Zygs([7], [s]; W), where Zegw/ (W) = 3=1) Zeaw ([7]; W) and
Zyes([sli W) = X2y Zyc3([7], [s]; W). This results in the system of 2% linear
equations for 226 unknowns Zegw ([]; W).

@ Solving the linear equations we recover the main statement of the theorem.

@ 267,53([s];i 1) = Arf(q([s])) Zeaw (1), where q(s)(v) = q([s])([7]) is a
well-defined quadratic form.
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Main “take home” message
Where do we go from here?

Conclusions & Path forward

Describe the family of surface-easy edge-binary models on an arbitrary
surface graph G (partition function is reducible to a sum of 226 Pfaffians)

@ Generate an arbitrary Vertex Gaussian Grassmann binary-Gauge
(VG®) Model on the graph

@ Fix the binary-gauge according to the Kasteleyn (spinor) rule on the
extended graph

@ Construct respective Edge-Binary Wick model on the original graph

@ Apply an arbitrary skew-orthogonal (holographic)
gauge/transformation

The partition function of the resulting model is the sum of 228 +-weighted Pfaffians.

[All terms in the sum are explicitly known.]

A
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Main “take home” message

Where do we go from here?

Conclusions & Path forward

@ Use the described hierarchy of easy planar models as a basis
for efficient variational approximation of generic (difficult)
planar problems. (The approach may also be useful for
building efficient variational matrix-product state wave
functions for quantum models. Dynamical Bayesian Networks:
141, tree+1, ....)

@ Study Wick Gaussian models on non-planar but
Pfaffian orientable or k-Pfaffian orientable graphs (where any
dimer model on surface graph of genus g is 226-Pfaffian
orientable).

@ Almost Planar = Geographical Graphical Models,
Renormalization Group, Generalized BP

@ Analogs of all of the above for Surface-Difficult Problems
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Example (1):

Ising model oi ==+1
P(F) = Z Lexp (Z(,—J) J,'jO’,'O'j)

Jjj defines the graph (lattice)

v

Graphical Representation

Variables are usually associated with vertexes ... but transformation to
the Forney graph (variables on the edges) is straightforward

\

@ Ferromagnetic (J; < 0), Anti-ferromagnetic (J; > 0) and Frustrated/Glassy
@ Magnetization (order parameter) and Ground State
@ Thermodynamic Limit, N — oo

@ Phase Transitions

http://cnls.lanl.gov/~chertkov/Talks/IT/easy.pdf
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Example (2):

Oorig = X = o
original corrupted bl
hossible
data noisy channel data: statistical : .
o , = o i preimage
Oorig € C P(X (T) log-likelihood inference eC
oeccC
codeword magnetic field
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Example (2):

corrupted _
. o possible
noisy channel data: statistical .
1= . : preimage
P(X|O‘) log-likelihood inference eC
o cl

magnetic field
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Example (2):

Probabilistic Reconstructio atistical Inference)

= X = o
corrupted .
. L. possible
noisy channel data: statistical .
= o . reimage
P(X|O’) log-likelihood inference pﬂ c Cg
g
magnetic field
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Example (2):

Probabilistic Reconstruction (Statistical Inference)

= X = o
corrupted .
. L. possible
noisy channel data: statistical .
1= o . reimage
P(X|O’) log-likelihood inference pa c Cg
(o
magnetic field

Maximum Likelihood

Marginalization

ML(X) = arg max P(X|7) o7 (X) = arg max Z P(X|5)

5\0’,’

Counting (Partition Function): Z(X) =) 5 P(X|&)
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Grassmann (fermion, nilpotent) Calculus for Pfaffians

Grassman (nilpotent) Variables on Vertexes

V(a,b) € Ge: 0,05+ 00, =0 /dG:O, /0d0:1

Pfaffian as a Gaussian Berezin Integral over the Fermions

forl 3

%1
)>>
By
b Y

) = 4/ det(

>

) df = Pf(
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Gauge Transformations, BP, Loop Calculus

Gauge Transformations Chertkov, Chernyak '06

Local Gauge, G, nsformations

Z= ZHa fa(&a)a 5—'3 = (Uab;UaC7 " )

Oap — Opy — +1

f;(&a = (Uaba o )) =
Zoéb Gap (Uaba o—gb) fa(o—;b’ e )

Zgab Gab(Uaba U/)Gba(o-ah 0'//) = 5(0/7 U//)

The partition function is invariant under any G-gauge!

7 _ Z: [1% @) = Z: H(Z £2(5) [ [ Gab(ca, Uf—m))

bea
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Gauge Transformations, BP, Loop Calculus

Belief Propagation as a Gauge Fixing Chertkov, Chernyak '06
7 = Z H f2(02) = Z H (Z f2(5%) H Gab(Tab, o—;b)>
g a o a “a, bea
Z=  Z(G) + > Z.(G)
all possible colorings of the graph
ground state P g grap
F=+1 3#+1, excited states
Va& Vbe a:
c#b
Z fa(O_"/)G‘SZP)(O'ab = _17Jab) H G(bp)(+1 a‘ ) 0
) cea

No loose BLUE=colored edges at any vertex of the graph!
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Belief Propagation as a Gauge Fixing (I1)
Va& Vbea:

sum— product

c#b

> 666 (1,0 )H G (11, 00) =0 _ 1,0l =7t S 6(E) ] 6P (41, 0k)
o’/a = c€a
S oy Gab(0abs 7" )Goa(abs ') = 8(c” ") NI
pa = Z f(“)clélaG ) (+1, 0%)
Belief Propagation in terms of Messages
G(bp)(+1 a_) exp (Unab) bp)( 1 a_) exp (70'77ba)
2\/C05h(7]ab aF 7'Iba) 2\/C°Sh(nab + 7']ba)

Z fa(o_:a) exp Z OacTlac (Gab — tanh (nab + 77ba)) =0

3a\o'ab cea

N 4 ) EXP(Zbea Uabﬁab) __exp(a(nab+nba))
b (Ua) - s, fa(ﬁa)exP(Zbea ‘Tabﬁab)7 bab(o) T 2o &P (nap+118a))
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Loop Series: Chertkov, Chernyak '06

Exact (!!) expression in terms of BP

Z=> T[#(G) =2 <1+Zr(C)>
Gy 2 C

H Ha
r(C) = L H fa
1 A-my) o
(ab)eC
@ The Loop Series is finite
C € Generalized Loops = Loops without loose ends O Al s i dhe sates ame

o

calculated within BP

5 s @ BP is exact on a tree
map = Z b( p)(o'a)a'ab

@ BP is a Gauge fixing condition.
Other choices of Gauges would
bp . .
Z b (7a) H Tab — Map) lead to different representation.
bea,C
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Ice Model [vertexes of max degree 3|

#PL-3-NAE-ICE [Valiant '02]

@ Input: A planar graph G = (V;E) of maximum degree 3.
@ Output: The number of orientations (arrows) such that no node has all the
edges directed towards it or away from it.

From arrows to binary variables

Zim =Y ( 11 fa(""\'a)) ( 11 ga—b("a,a—bv”b,a—b))

@ Edge {a, b} is broken in two by - 4L (obeo
. . a ,bte
insertion of a — b vertex " 0 > L
. . . ’ 1, 3b,c€dg(a), st maa_pF Taam
@ Introduce binary variables s.t. if fa(m,) = { 0 P o it Some
a—>b:>7ra7a,b:0,7rb7a,b:1 , 1 Taaeb % Th atb
b— a= Ta,a—b = 177Tb,a—b =0 8a—b(T3) = { 0, " otherwise

http://cnls.lanl.gov/~chertkov/Talks/IT/easy.
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lce Model [vertexes of max degree 3] I

General Gauge Transformation

fa(ma) — ?a(""a) = Z (H Gap(Tap, 7";27)) fa("";)

’ b~a
Ta

V{a,b} € G1: Y Gap(m, 7' )Gpa(m, w') = 5(x", ="")

z= [ ==X 11 (Z (H Gab(wab,w;b)) fa(ra))

™ a€gGy 7 acGy \ w, \b~a

v

Gauge Transformation for the lce model

gl _ 1 101 _ " _ 1’1 Ta,a—b f"“*”fg
been=72 Il -1 1 &—b(my) = —L  Taa—b=Tha b=

0, otherwise
~ 3 i, Ta,a—1 = Ma,a—2 = Ta,3—3 =0
fa(ma,a—1, Ma,a—2,Ta,a—3) = —= * ¢ —1/3, Y Taa—i =2
2 0, otherwise
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http://cnls.lanl.gov/~chertkov/Talks/IT/easy.pdf
http://arxiv.org/abs/0902.0320

	Introduction
	Graphical Models
	Easy and Difficult
	Dimer and Ising Models on Planar Graphs

	Planar is not necessarily easy ... but
	Holographic Algorithms & Gauge Transformations
	Edge-Binary models of degree 3
	Edge-Binary Wick Models (of arbitrary degree)

	Surface-Easy
	Kasteleyn Conjecture for Dimer Model on Surface Graphs
	Edge-Binary Graph-Model which are Surface-Easy

	Conclusions & Path forward
	Main ``take home" message
	Where do we go from here?

	Appendix
	Gauge Transformations, BP, Loop Calculus


